ANNEXURE A OF THE NOTICE FOR THE PROPOSED RESERVE DETERMINATION FOR THE BERG CATCHMENT IN THE BERG-OLIFANTS WATER MANAGEMENT AREA

1. GROUNDWATER QUANTITY COMPONENT

- (1) The Groundwater Reserve, which includes the groundwater contribution to the EWR and the BHN per GRU for the Berg Catchment, is set out in terms of section 16(1) of the Act. The catchment receives an estimated total recharge of 620.78 Mm³/a, of which 69.98 Mm³/a represents the groundwater contribution to the EWR and 2.35 Mm³/a represents the groundwater contribution to the BHN. The groundwater quantity component of the Reserve for the Berg catchment is 72.33 Mm³/a, which accounts for 11.7% of the total recharge.
- (2) The Berg catchment encompasses a total of 30 quaternary catchments, which are further delineated into 25 GRUs as are presented in Figure 1. It's important to note that groundwater systems may not always correspond directly to surface water catchments (i.e., GRUs can encompass one or more quaternary catchments, or portions thereof, depending on their geological and hydrogeological characteristics). Therefore, the extents of GRUs were determined considering factors such as the physical geometry of aquifer systems (largely influenced by surface and subsurface geology), groundwater recharge areas, and various aquifer boundary conditions.
- (3) The Groundwater Quantity Component was calculated considering the total groundwater contribution to both the EWR and the BHN Reserves (see **Table 1.1**).

(a) Groundwater Contribution to Basic Human Needs

The groundwater component of the BHN addresses individuals without access to a formal water supply and residing beyond 500 meters from a perennial river (known as the Qualifying Population). The Qualifying Population was calculated as 257,331 individuals within the Berg catchment, with a daily water demand set at a fixed value of 25 $\ell/p/d$. Therefore, the groundwater component of the BHN Reserve was determined to be 2.35 Mm³/a (Table 1.1).

(b) Groundwater Contribution to Ecological Water Requirements

Quantifying the groundwater component of the EWR involved using a baseflow separation technique, wherein groundwater discharge was calculated using monthly flow data calibrated to meet Target Ecological Categories (TECs) for all river nodes and priority estuaries. A balancing and routing tool factored in cumulative flow downstream, allowing calculations of changes in flow and TECs. Therefore, to assess the groundwater contribution to the EWR, a detailed GIS-based catchment analysis re-evaluated incremental contributing catchments based on various factors, whereafter a recharge ratio was applied to the total dry-season contribution of groundwater to baseflow per GRU and associated aquifer types. The groundwater component of the EWR Reserve was calculated as 69.98 Mm³/a (Table 1.1).

Table 1.1: Groundwater Quantity Component of the Reserve for the Berg catchment.

GRU	Associated Quaternary Catchments ^a	Area (Km²)	Mean Annual Recharge (Mm³/a) ^b	Qualifying Population	Groundwater Contribution Baseflow (Mm ³ /a)	Water Use (Mm³/a)	Groundwater Contribution to the EWR Reserve (Mm ³ /a)	Groundwater Contribution to the BHN Reserve (Mm ³ /a)	Groundwater Reserve (Mm³/a)	Groundwater Reserve (% Mean Annual Recharge)
Adamboerskraal	G10K, G10L, G10M, G30A	612.30	21.61	889	6.00	2.13	6.00	0.01	6.01	28%
Atlantis	G21A, G21B, G21D	255.68	22.74°	2801	0.08	1.70 ^d	0.08	0.03	0.11	0%
Cape Flats	G22C, G22D, G22E, G22H	421.94	41.25 ^e	76862	0.51	12.00 ^f	0.51	0.70	1.21	3%
Cape Peninsula	G22A, G22B, G22C, G22D	292.53	10.99	9346	5.43	0.07	5.43	0.09	5.52	50%
Cape Town Rim	G21E, G21F, G22A, G22B, G22C, G22D, G22E, G22G, G22H	814.62	18.60	21348	0.87	6.21	0.87	0.20	1.07	6%
Darling	G10L, G21A, G21B, G21D	408.82	9.95	1640	0.03	0.76	0.03	0.02	0.05	0%
Drakensteinberge	G10A, G10C, G22F, G22J, H60A, H60B	164.95	27.60	372	2.88	0.05	2.88	0.00	2.88	10%

^a Groundwater systems may not always align with surface water catchments. The quaternary catchments listed here encompass all those within the GRU.

^b Unless otherwise stated, the rainfall recharge value was calculated from the first order Map-Centric Simulation method outlined in the project's specialist reports.

^c The rainfall recharge value was obtained from a model-based calibrated recharge estimation (after CoCT, 2018).

^d The water use value includes registered municipal abstraction by the CCT of 5 Mm³/a as per NWA Section 21(a) and Managed Aquifer Recharge (as per NWA Section 21(e) water use licence) of up to 4.2 Mm³/a (as a negative water use). The abstraction of 1 M m³/a by Eskom is not registered in the WARMS database, therefore excluded from the water use. ^e The rainfall recharge value was obtained from a model-based calibrated recharge estimation (after CoCT, 2020).

^f The water use value includes licenced municipal abstraction of 20 Mm³/a by the CCT in development as per NWA Section 21(a) and Managed Aquifer Recharge (as per NWA Section 21(e) water use licence) of up to 14.6 Mm³/a (as a negative water use).

GRU	Associated Quaternary Catchments ^a	Area (Km²)	Mean Annual Recharge (Mm³/a) ^b	Qualifying Population	Groundwater Contribution Baseflow (Mm ³ /a)	Water Use (Mm³/a)	Groundwater Contribution to the EWR Reserve (Mm ³ /a)	Groundwater Contribution to the BHN Reserve (Mm ³ /a)	Groundwater Reserve (Mm³/a)	Groundwater Reserve (% Mean Annual Recharge)
Eendekuil Basin	G10F, G10H, G10J, G10K	936.94	21.88	9968	6.95	4.85	6.95	0.09	7.04	32%
Elandsfontein	G10L, G10M, G21A	532.57	15.47	545	6.39	1.09	6.39	0.01	6.40	41%
Groot Winterhoek	E10B, E10C, G10E, G10G, G10H, G10J	379.26	22.50	1861	0.77	1.39	0.77	0.02	0.79	3%
Langebaan Road	G10L, G10M	903.71	23.28	1891	5.52	8.59	5.52	0.02	5.54	24%
Malmesbury	G10D, G10F, G10L, G21B, G21C, G21D, G21E, G21F, G22C, G22E, G22G	1600.36	52.65	37580	1.18	14.75	1.18	0.34	1.52	3%
Middle-Lower Berg	G10F, G10J, G10K, G10L, G10M, G30A	1485.40	42.49	9355	11.15	2.23	11.15	0.09	11.24	26%
Northern Swartland	G10J, G10K, G10L, G21A, G21C, G21D	1257.65	31.85	5149	0.20	1.79	0.20	0.05	0.25	1%
Paarl- Franschhoek	G10A, G10B, G10C, G10D, G21E, G22F, H10J, H60B	368.50	26.61	13875	3.01	9.82	3.01	0.13	3.14	12%
Piketberg	G10H, G10K, G10M, G30A, G30D	298.29	20.33	3965	2.07	5.58	2.07	0.04	2.11	10%

GRU	Associated Quaternary Catchments ^a	Area (Km²)	Mean Annual Recharge (Mm³/a) ^b	Qualifying Population	Groundwater Contribution Baseflow (Mm ³ /a)	Water Use (Mm³/a)	Groundwater Contribution to the EWR Reserve (Mm ³ /a)	Groundwater Contribution to the BHN Reserve (Mm ³ /a)	Groundwater Reserve (Mm³/a)	Groundwater Reserve (% Mean Annual Recharge)
Steenbras- Nuweberg	G22J, G22K, G40A, G40B, G40C, G40D, H60A	150.24	58.76 ^g	1709	1.16	8.00 ^h	1.16	0.02	1.18	2%
Stellenbosch- Helderberg	G10C, G21E, G22E, G22F, G22G, G22H, G22J, G22K, H60A	570.58	41.52	26508	2.34	8.81	2.34	0.24	2.58	6%
Tulbagh	G10E, G10G, H10F	291.38	10.87	2568	1.28	3.78	1.28	0.02	1.30	12%
Voëlvlei- Slanghoek	G10D, G10E, G10F, G10J, H10E, H10F, H10J	184.26	14.10	739	1.62	0.13	1.62	0.01	1.63	12%
Vredenburg	G10M	376.18	7.43	1227	0.00	1.16	0.00	0.01	0.01	0%
Wellington	G10D, G10F, G10J, G21E	1068.81	39.49	25733	6.75	4.48	6.75	0.24	6.99	18%
Wemmershoek	G10A, G10B, G10C, H10J, H10K, H60B	229.13	26.83	187	3.59	0.81	3.59	0.00	3.59	13%
Witzenberg	G10E, G10G, H10C, H10D, H10F	39.95	2.78	243	0.18	0.08	0.18	0.00	0.18	7%
Yzerfontein	G10L, G10M, G21A	320.33	9.20	970	0.02	0.26	0.02	0.01	0.03	0%

^g The rainfall recharge value was obtained from the first order GRAII Spatial Distribution (modified after CoCT, 2022). ^h Includes licenced municipal abstraction of 8 Mm³/a by CCT under development (phase 1) as per NWA Section 21(a)

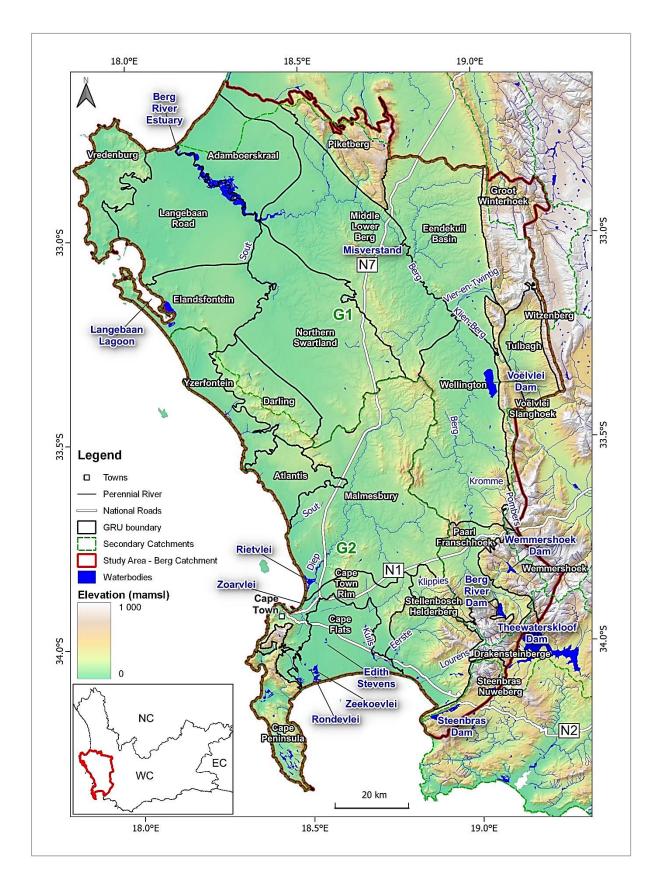


Figure 1: The Berg catchment area and the associated groundwater resource units (GRU's).

2. GROUNDWATER QUALITY COMPONENT

- (1) The groundwater quality component of the Reserve for the Berg Catchment is defined by two components: 1) the Groundwater Quality Reserve, which is based on statistical analysis of the baseline and median + 10% concentrations of chemical parameters within specific aquifers in the GRUs, and 2) the Groundwater Quality Requirement for BHN, which is the upper limit of Class I Water Quality (Drinking) as outlined in **Table 2.1**.
- (1) The Groundwater Quality Component of the Reserve is outlined in the GRU-specific tables (see **Table 2.2** below). The Groundwater Quality Component of the Reserve was determined by assessing two primary components, namely-

(a) **Groundwater Quality Reserve**

Determined based on statistical analysis of the baseline and median + 10% concentrations of specific chemical parameters within specific aquifers in the GRUs;

(b) Groundwater Quality Requirement for BHN

Upper limit of Class I Water Quality [Drinking] (see Table 2.2Error! Reference source not found.).

(2) GRUs with limited water quality data, such as Drakensteinberge, Voëlvlei-Slanghoek, Witzenberg, Groot Winterhoek, Piketberg, Tulbagh, and Vredenberg, were excluded from the analysis, and no Groundwater Quality Component has been established. **Table 2.2** below.

GENERAL CHEMISTRY

Table 2.1: General water chemistry (after South African Water Quality Guidelines, Volume 1:Domestic Water Use, 2nd Ed. 1996. Department of Water Affairs, Pretoria, South
Africa).

Chemical Parameter	Target Wat	er Quality Ranges			
Chemical Falameter	Units	Class 0	Class I	Class II	Class III
pН	pH units	6 - 9	5 - 6 & 9 - 9.5	4 – 5 & > 9.5 - 10	< 4 or > 10
Electrical Conductivity	mS/m	0 - 70	70 - 150	150 - 300	> 370
Calcium as Ca	mg/l	0 - 80	80 - 150	150 - 300	> 300
Magnesium as Mg	mg/l	0 - 30	30 - 70	70 - 100	> 100
Sodium as Na	mg/l	0 - 100	100 - 200	200 - 400	> 400
Chloride as Cl	mg/l	0 - 100	100 - 200	200 - 600	> 600
Sulphate as SO	mg/l	0 - 200	200 - 400	400 - 600	> 600
Nitrate as NO _x N	mg/l	0 - 6	6 - 10	10 - 20	> 20
Fluoride as F	mg/l	0 - 1	1 - 1.5	1.5 - 3.5	> 3.5

- **Class 0:** Water is classed as ideal drinking water, suitable for lifetime use. The values are essentially the same as the target water guideline in the South African Water Quality Guideline for Domestic Use.
- **Class I:** Water is still safe for lifetime use; however, some mild health effects may, in very rare cases, occur. They may also be some aesthetic effects.

- **Class II:** Water allowable for limited short term or emergency use. Health effects may be felt more commonly, as compared to Class I, especially by those who are long term users of the water. Therefore, it is not recommended that the water be used continuously for life. This is only class in the guideline which is not specific in terms of the exact duration that the water can be used for. It states that it can be used for short term use; but does not define what length of time "short term" refers to.
- **Class III:** Class III water will cause serious health effects, particularly in infants and elderly people. Use of this water is not recommended for drinking purposes.

GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc. ⁱ	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve ^j	BHN Threshold ^k
		рН		2	3	7	6.5	7	6.6	7	5 – 9
		Electrical Conductivity	mS/m	2	3	499.1	499.1	823.2	752	823.2	150
		Sodium as Na	mg/l	2	3	874.9	874.9	1374.9	1367.8	1374.9	200
		Calcium as Ca	mg/l	2	3	42	42	67.4	58	63.8	150
		Magnesium as Mg	mg/l	2	3	73.8	73.8	145.1	140.7	145.1	70
Adamboerskraal	Primary/	Chloride as Cl	mg/l	2	3	1540	1540	2513.3	2442.1	2513.3	200
Adampoerskraal	Intergranular Aquifer	Sulphate as SO4	mg/l	2	3	52.2	52.2	164	143.3	157.63	400
		Nitrate + Nitrite	mg/l	2	3	0.1	0.02	0.1	0.02	0.1	10
		Fluoride as F	mg/l	2	3	0.31	0.3	0.5	0.31	0.341	1.5
		Ammonia as NH3	mg/l	2	3	0.19	0.18	0.62	0.19	0.209	-
		Orthophosphate as PO4	mg/l	2	3	0.24	0.036	0.243	0.051	0.24	-
		Potassium as K	mg/l	2	3	11.28	9.34	11.28	10.95	11.28	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		27	42	7.73	2.60	8.35	7.60	8.35	5 – 9
		pH Electrical Conductivity	mS/m	27 27	42 42	7.73 99.74	2.60 38.10	8.35 156.70	7.60 85.55	8.35 99.74	5 – 9 150
			mS/m mg/l			-					
		Electrical Conductivity		27	42	99.74	38.10	156.70	85.55	99.74	150
		Electrical Conductivity Sodium as Na	mg/l	27 27	42 42	99.74 116.14	38.10 22.60	156.70 219.40	85.55 95.35	99.74 116.14	150 200
Atlantia	Primary /	Electrical Conductivity Sodium as Na Calcium as Ca	mg/l mg/l	27 27 27	42 42 42	99.74 116.14 46.05	38.10 22.60 4.80	156.70 219.40 183.50	85.55 95.35 59.55	99.74 116.14 65.51	150 200 150
Atlantis	Primary / Intergranular Aquifer	Electrical Conductivity Sodium as Na Calcium as Ca Magnesium as Mg	mg/l mg/l mg/l	27 27 27 27 27	42 42 42 42 42	99.74 116.14 46.05 17.28	38.10 22.60 4.80 4.90	156.70 219.40 183.50 35.80	85.55 95.35 59.55 9.90	99.74 116.14 65.51 17.28	150 200 150 70
Atlantis	Intergranular	Electrical Conductivity Sodium as Na Calcium as Ca Magnesium as Mg Chloride as Cl	mg/l mg/l mg/l mg/l	27 27 27 27 27 27	42 42 42 42 42 42	99.74 116.14 46.05 17.28 240.93	38.10 22.60 4.80 4.90 37.10	156.70 219.40 183.50 35.80 435.40	85.55 95.35 59.55 9.90 145.85	99.74 116.14 65.51 17.28 240.93	150 200 150 70 200
Atlantis	Intergranular	Electrical Conductivity Sodium as Na Calcium as Ca Magnesium as Mg Chloride as Cl Sulphate as SO4	mg/l mg/l mg/l mg/l	27 27 27 27 27 27 27 27	42 42 42 42 42 42 42 42	99.74 116.14 46.05 17.28 240.93 24.70	38.10 22.60 4.80 4.90 37.10 2.00	156.70 219.40 183.50 35.80 435.40 355.70	85.55 95.35 59.55 9.90 145.85 19.80	99.74 116.14 65.51 17.28 240.93 24.70	150 200 150 70 200 400
Atlantis	Intergranular	Electrical Conductivity Sodium as Na Calcium as Ca Magnesium as Mg Chloride as Cl Sulphate as SO4 Nitrate + Nitrite	mg/l mg/l mg/l mg/l mg/l	27 27 27 27 27 27 27 27 27	42 42 42 42 42 42 42 42 42	99.74 116.14 46.05 17.28 240.93 24.70 0.05	38.10 22.60 4.80 4.90 37.10 2.00 0.02	156.70 219.40 183.50 35.80 435.40 355.70 2.19	85.55 95.35 59.55 9.90 145.85 19.80 0.02	99.74 116.14 65.51 17.28 240.93 24.70 0.05	150 200 150 70 200 400 10
Atlantis	Intergranular	Electrical Conductivity Sodium as Na Calcium as Ca Magnesium as Mg Chloride as Cl Sulphate as SO4 Nitrate + Nitrite Fluoride as F	mg/l mg/l mg/l mg/l mg/l mg/l	27 27 27 27 27 27 27 27 27 27	42 42 42 42 42 42 42 42 42 42 42	99.74 116.14 46.05 17.28 240.93 24.70 0.05 1.16	38.10 22.60 4.80 37.10 2.00 0.02 0.05	156.70 219.40 183.50 35.80 435.40 355.70 2.19 1.33	85.55 95.35 9.90 145.85 19.80 0.02 0.15	99.74 116.14 65.51 17.28 240.93 24.70 0.05 1.16	150 200 150 70 200 400 10

 Table 2.2: Groundwater Quality Component of the Reserve for the Berg catchment.

ⁱ In the Berg catchment, determining true baseline concentrations, unaffected by human activities, was challenging due to diverse anthropogenic influences. Therefore, an approximation of the baseline was made using monitoring sites in areas with minimal human impact. To mitigate outliers, the 95th percentile statistical method was favoured over maximum concentrations, capturing the majority of data while excluding extreme values.

^j The Groundwater Quality Reserve was determined by taking the Median concentration plus 10%. If this value was lower than the Baseline concentration, the Baseline value was chosen. If it exceeded the Maximum concentration, then the Maximum value was selected.

k The BHN threshold was selected based on the upper limit of Class I water quality [Drinking] (WRC et al. 2nd Edition, 1998, Volume 1: Assessment Guide).

GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		37	581	8.30	5.07	8.55	7.84	8.55	5 – 9
		Electrical Conductivity	mS/m	37	581	113.72	13.00	578.00	88.85	113.72	150
		Sodium as Na	mg/l	37	581	111.36	3.30	784.00	58.90	111.36	200
		Calcium as Ca	mg/l	37	581	112.16	3.81	266.50	101.50	112.16	150
		Magnesium as Mg	mg/l	37	581	14.62	1.00	124.70	11.60	14.62	70
Cape Flats	Primary / Intergranular	Chloride as Cl	mg/l	37	581	209.22	5.00	1993.00	100.00	209.22	200
Caperials	Aquifer	Nitrate + Nitrite	mg/l	37	581	8.35	0.02	23.20	1.12	8.35	400
		Fluoride as F	mg/l	37	581	0.26	0.05	3.05	0.15	0.26	10
		Ammonia as NH3	mg/l	37	581	0.08	0.02	31.89	0.06	0.08	1.5
		Orthophosphate as PO4	mg/l	37	581	0.03	0.00	1.35	0.01	0.03	-
		Potassium as K	mg/l	37	581	2.95	0.15	53.66	1.90	2.95	-
		Sulphate as SO4 as SO4	mg/l	37	581	44.40	2.00	326.00	45.40	49.94	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		11	11	6.96	6.54	7.57	7.10	7.57	5 – 9
		Electrical Conductivity	mS/m	11	11	25.80	25.80	119.00	89.80	98.78	150
		Sodium as Na	mg/l	11	11	31.30	31.30	115.40	89.10	98.01	200
		Calcium as Ca	mg/l	11	11	3.60	3.60	109.60	30.70	33.77	150
	Fractured	Magnesium as Mg	mg/l	11	11	3.50	3.50	31.40	16.70	18.37	70
Cape Peninsula	Table Mountain	Chloride as Cl	mg/l	11	11	54.70	54.70	207.10	147.20	161.92	200
Cape i eninsula	Group	Sulphate as SO4	mg/l	11	11	12.20	12.20	107.40	72.20	79.42	400
	Aquifer	Nitrate + Nitrite	mg/l	11	11	0.07	0.02	10.89	0.32	0.35	10
	•	Fluoride as F	mg/l	11	11	0.26	0.05	0.33	0.15	0.26	1.5
		Ammonia as NH3	mg/l	11	11	0.02	0.02	2.51	0.02	0.02	-
		Orthophosphate as PO4	mg/l	11	11	1.02	0.01	1.08	0.02	1.02	-
		Potassium as K	mg/l	11	11	1.79	0.83	46.71	5.95	6.55	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		21	21	7.78	7.00	8.62	7.47	8.22	5 – 9
		Electrical Conductivity	mS/m	21	21	105.10	21.00	659.00	92.00	105.10	150
		Sodium as Na	mg/l	21	21	142.60	28.20	1048.00	128.40	142.60	200
		Calcium as Ca	mg/l	21	21	45.50	2.30	259.80	15.80	45.50	150
	Fractured	Magnesium as Mg	mg/l	21	21	19.10	1.70	119.10	20.60	22.66	70
	and	Chloride as Cl	mg/l	21	21	240.60	44.00	2100.00	220.00	242.00	200
Cape Town Rim GRU	Intergranular Basement	Sulphate as SO4	mg/l	21	21	8.50	5.50	350.00	34.10	37.51	400
	Aquifer	Nitrate + Nitrite	mg/l	21	21	0.28	0.02	6.57	0.13	0.28	10
	(Tygerberg)	Fluoride as F	mg/l	21	21	0.28	0.02	2.60	0.13	0.30	1.5
		Ammonia as NH3	mg/l	21	21	0.14	0.12	0.75	0.27	0.02	-
		Orthophosphate as PO4	mg/l	21	21	0.02	0.02	0.13	0.02	0.02	-
		Potassium as K	mg/l	21	21	3.05	0.00	13.20	3.02	3.32	-
		1 0(033)(11) 03 1	iiig/i	21	21	5.05	0.07	15.20	0.02	0.02	-

GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		9	9	6.80	6.70	7.86	7.20	7.86	5 – 9
		Electrical Conductivity	mS/m	9	9	192.00	108.60	1100.00	281.60	309.76	150
		Sodium as Na	mg/l	9	9	299.20	151.90	1907.00	416.30	457.93	200
	Fractured	Calcium as Ca	mg/l	9	9	16.90	9.30	251.00	46.60	51.26	150
	and	Magnesium as Mg	mg/l	9	9	38.80	11.50	236.10	57.60	63.36	70
Darling	Intergranular	Chloride as Cl	mg/l	9	9	499.10	332.70	3413.80	766.10	842.71	200
Dannig	Basement	Sulphate as SO4	mg/l	9	9	96.10	10.70	542.20	96.10	105.71	400
	Aquifer	Nitrate + Nitrite	mg/l	9	9	0.83	0.02	4.16	0.83	0.91	10
	(CGS)	Fluoride as F	mg/l	9	9	0.15	0.10	1.50	0.56	0.62	1.5
		Ammonia as NH3	mg/l	9	9	0.02	0.02	0.08	0.02	0.02	-
		Orthophosphate as PO4	mg/l	9	9	0.01	0.00	0.02	0.00	0.01	-
		Potassium as K	mg/l	9	9	8.06	7.01	43.63	11.42	12.56	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		10	10	8.20	7.86	8.45	8.14	8.45	5 – 9
		Electrical Conductivity	mS/m	10	10	205.00	42.10	583.00	233.00	256.30	150
		Sodium as Na	mg/l	10	10	323.20	41.70	967.10	444.10	488.51	200
	Fractured	Calcium as Ca	mg/l	10	10	25.50	10.60	151.00	20.85	25.50	150
	and	Magnesium as Mg	mg/l	10	10	58.20	18.40	342.00	55.05	60.56	70
Eendekuil	Intergranular	Chloride as Cl	mg/l	10	10	543.60	92.80	1873.40	664.90	731.39	200
Lenderun	Basement	Sulphate as SO4	mg/l	10	10	52.60	7.30	219.00	79.55	87.51	400
	Aquifer	Nitrate + Nitrite	mg/l	10	10	0.84	0.04	5.39	0.85	0.94	10
	(Tygerberg)	Fluoride as F	mg/l	10	10	0.94	0.20	1.87	1.01	1.11	1.5
		Ammonia as NH3	mg/l	10	10	0.02	0.02	0.05	0.02	0.02	-
		Orthophosphate as PO4	mg/l	10	10	0.01	0.01	0.02	0.01	0.01	-
		Potassium as K	mg/l	10	10	11.27	1.28	44.80	4.22	11.27	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		3	5	7.49	7.17	7.60	7.35	7.60	5 – 9
		Electrical Conductivity	mS/m	3	5	49.10	45.50	101.90	49.10	54.01	150
		Sodium as Na	mg/l	3	5	55.93	50.90	109.70	54.40	59.84	200
		Calcium as Ca	mg/l	3	5	37.26	26.50	83.40	34.20	37.62	150
		Magnesium as Mg	mg/l	3	5	3.50	3.50	12.60	3.50	3.85	70
	Primary /	Chloride as Cl	mg/l	3	5	100.82	97.50	195.10	101.00	111.10	200
		Sulphate as SO4	mg/l	3	5	12.90	12.10	29.20	12.10	13.31	400
Elandsfontein	Aquifer .	Nitrate + Nitrite	mg/l	3	5	4.62	0.15	4.62	1.51	4.62	10
		Fluoride as F	mg/l	3	5	0.24	0.10	0.82	0.19	0.24	1.5
		Ammonia as NH3	mg/l	3	5	0.14	0.04	0.14	0.12	0.14	-
		Orthophosphate as PO4	mg/l	3	5	0.19	0.01	0.30	0.19	0.21	-
						-	-		-	1	

GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		8	92	8.41	6.77	8.71	8.11	8.71	5 – 9
		Electrical Conductivity	mS/m	8	92	59.50	59.50	289.50	152.00	167.20	150
		Sodium as Na	mg/l	8	81	202.80	61.00	445.30	198.52	218.37	200
		Calcium as Ca	mg/l	8	84	72.80	27.00	175.00	68.89	75.78	150
		Magnesium as Mg	mg/l	8	86	17.90	5.30	97.92	17.71	19.48	70
Langebaan Road	Primary / Intergranular	Chloride as Cl	mg/l	8	88	385.60	110.00	780.80	334.69	385.60	200
Langebaan Koau	Aquifer	Sulphate as SO4	mg/l	8	89	25.18	0.60	467.60	25.50	28.05	400
	,	Nitrate + Nitrite	mg/l	8	87	0.25	0.02	9.81	0.06	0.25	10
		Fluoride as F	mg/l	8	82	0.70	0.22	2.11	0.61	0.70	1.5
		Ammonia as NH3	mg/l	8	90	0.14	0.00	0.55	0.03	0.14	-
		Orthophosphate as PO4	mg/l	8	90	0.04	0.00	0.24	0.03	0.04	-
		Potassium as K	mg/l	8	83	4.81	1.00	27.75	4.80	5.28	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		66	197	7.15	1.00	8.60	7.64	8.40	5 – 9
		Electrical Conductivity	mS/m	66	197	1549.90	29.66	2110.00	107.90	1549.90	150
		Sodium as Na	mg/l	66	191	282.03	25.00	1726.90	156.40	282.03	200
	Fractured	Calcium as Ca	mg/l	66	194	178.18	3.50	219.30	16.98	178.18	150
	and	Magnesium as Mg	mg/l	66	193	66.07	4.30	205.00	18.68	66.07	70
Malmesbury	Intergranular	Chloride as Cl	mg/l	66	197	655.78	50.00	2879.60	257.01	655.78	200
Walliesbury	Basement	Sulphate as SO4	mg/l	66	196	172.57	1.50	360.70	33.30	172.57	400
	Aquifer	Nitrate + Nitrite	mg/l	66	194	503.08	0.02	589.68	0.56	503.08	10
	(Tygerberg)	Fluoride as F	mg/l	66	191	0.26	0.03	2.94	0.38	0.42	1.5
		Ammonia as NH3	mg/l	66	195	0.10	0.00	1.27	0.03	0.10	-
		Orthophosphate as PO4	mg/l	66	195	0.10	0.00	14.00	0.02	0.10	-
		Potassium as K	mg/l	66	192	18.77	1.10	50.31	3.67	18.77	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		46	60	7.63	3.11	8.71	7.70	8.47	5 – 9
		Electrical Conductivity	mS/m	46	60	841.00	20.68	1212.00	636.00	841.00	150
		Sodium as Na	mg/l	46	57	1345.50	75.00	2376.10	930.60	1345.50	200
		Calcium as Ca	mg/l	46	58	166.30	4.70	218.40	63.36	166.30	150
	Fractured	Magnesium as Mg	mg/l	46	58	204.00	2.85	353.00	135.16	204.00	70
	and	Chloride as Cl	mg/l	46	58	2627.50	25.52	4393.30	1972.70	2627.50	200
	Intergranular Basement	Sulphate as SO4	mg/l	46	58	342.80	3.52	799.60	196.90	342.80	400
Middle-Lower Berg	Aquifer			40							
5	(Tygerberg)	Nitrate + Nitrite	mg/l	-	58	6.16	0.02	24.96	1.24	6.16	10
		Fluoride as F	mg/l	46	58	0.57	0.17	2.22	0.67	0.74	1.5
		Ammonia as NH3	mg/l	46	58	0.02	0.02	1.37	0.04	0.04	-
		Orthophosphate as PO4	mg/l	46	58	0.01	0.00	0.13	0.01	0.01	-
		Potassium as K	mg/l	46	57	22.53	1.73	79.19	24.37	26.81	-

GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		31	31	7.59	5.55	8.13	7.70	8.13	5 – 9
		Electrical Conductivity	mS/m	31	31	532.00	49.70	1175.50	400.00	532.00	150
		Sodium as Na	mg/l	31	31	984.70	65.50	2133.50	614.00	984.70	200
	Fractured	Calcium as Ca	mg/l	31	31	35.70	3.80	286.50	52.40	57.64	150
	and	Magnesium as Mg	mg/l	31	31	81.00	9.90	437.30	76.50	84.15	70
Northern Swartland	Intergranular	Chloride as Cl	mg/l	31	31	1643.10	135.10	4123.90	1121.80	1643.10	200
Northern Swartland	Basement	Sulphate as SO4	mg/l	31	31	114.70	7.90	484.70	114.70	126.17	400
	Aquifer	Nitrate + Nitrite	mg/l	31	31	0.87	0.02	21.53	0.96	1.06	10
	(Tygerberg)	Fluoride as F	mg/l	31	31	0.72	0.15	1.25	0.70	0.77	1.5
		Ammonia as NH3	mg/l	31	31	0.02	0.02	0.52	0.02	0.02	-
		Orthophosphate as PO4	mg/l	31	31	0.01	0.00	0.11	0.01	0.01	-
		Potassium as K	mg/l	31	31	23.46	1.48	116.34	14.00	23.46	-
GRU	Aquifer Unit	Parameter	Unit	No.	No.	Baseline	Min	Max	Median	Groundwater	BHN
	, iquiter entre		•	BHs	Samples	Conc.	Conc.	Conc.	Conc.	Quality Reserve	Threshold
		pH		1	1	7.04	7.04	7.04	7.04	7.04	5 – 9
		Electrical Conductivity	mS/m	1	1	14.40	14.40	14.40	14.40	14.40	150
		Sodium as Na	mg/l	1	1	18.20	18.20	18.20	18.20	18.20	200
	Fractured	Calcium as Ca	mg/l	1	1	2.80	2.80	2.80	2.80	2.80	150
	and	Magnesium as Mg	mg/l	1	1	1.70	1.70	1.70	1.70	1.70	70
Paarl-Franschoek	Intergranular	Chloride as Cl	mg/l	1	1	27.50	27.50	27.50	27.50	27.50	200
	Basement	Sulphate as SO4	mg/l	1	1	2.00	2.00	2.00	2.00	2.00	400
	Aquifer (CGS)	Nitrate + Nitrite	mg/l	1	1	0.76	0.76	0.76	0.76	0.76	10
	(000)	Fluoride as F	mg/l	1	1	0.25	0.25	0.25	0.25	0.25	1.5
		Ammonia as NH3	mg/l	1	1	0.06	0.06	0.06	0.06	0.06	-
		Orthophosphate as PO4	mg/l	1	1	0.10	0.10	0.10	0.10	0.10	-
	_	Potassium as K	mg/l	1	1	1.75	1.75	1.75	1.75	1.75	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		16	54	7.18	4.87	9.35	6.80	7.48	5 – 9
		Electrical Conductivity	mS/m	16	58	14.00	2.47	38.00	13.00	14.30	150
		Sodium as Na	mg/l	16	27	6.60	3.70	79.20	8.15	8.97	200
		Calcium as Ca	mg/l	16	57	2.78	0.50	50.10	5.20	5.72	150
	Fractured	Magnesium as Mg	mg/l	16	38	1.83	0.20	7.60	1.30	1.83	70
	Table	Chloride as Cl	mg/l	16	27	18.01	1.40	31.00	13.25	18.01	200
Steenbras-Nuweberg	Mountain	Sulphate as SO4	mg/l	16	53	1.49	0.20	61.00	4.20	4.62	400
	Group Aquifer	Nitrate + Nitrite	mg/l	16	38	1.49	0.20	1.20	0.10	1.05	10
	(Peninsula)	Fluoride as F	mg/l	16	54	0.28	0.00	0.76	0.10	0.55	1.5
	, ,	Ammonia as NH3	mg/l	16	58	0.20	0.00	12.00	0.30	0.00	-
		Orthophosphate as PO4	mg/l	16	27	0.12	0.00	0.97	0.10	0.32	
		Potassium as K	-	16	34	0.64	0.00	15.30	2.50	2.75	_
		r ulassiulli as n	mg/l	10	54	0.04	0.20	15.50	2.00	2.10	-

		рН		16	27	5.91	4.63	8.61	5.57	6.13	5 – 9
		Electrical Conductivity	mS/m	16	38	10.00	2.00	24.20	9.00	10.00	150
		Sodium as Na	mg/l	16	38	11.13	2.10	21.90	9.30	11.13	200
		Calcium as Ca	mg/l	16	38	5.10	0.32	7.41	1.00	5.10	150
	Fractured Table	Magnesium as Mg	mg/l	16	27	5.35	0.20	6.60	1.10	5.35	70
	Mountain	Chloride as Cl	mg/l	16	34	19.95	1.00	37.80	17.00	19.95	200
	Group	Sulphate as SO4	mg/l	16	54	6.50	0.40	17.70	3.35	6.50	400
	Aquifer	Nitrate + Nitrite	mg/l	16	61	0.20	0.00	3.66	0.20	0.22	10
	(Nardouw)	Fluoride as F	mg/l	16	54	0.50	0.05	0.50	0.10	0.50	1.5
		Ammonia as NH3	mg/l	16	56	2.88	0.01	12.22	0.10	2.88	-
		Orthophosphate as PO4	mg/l	16	56	0.20	0.00	0.20	0.10	0.20	-
		Potassium as K	mg/l	16	27	1.00	0.09	14.10	0.93	1.02	-
GRU	Aquifer Unit	Parameter	Unit	No.	No.	Baseline	Min	Max	Median	Groundwater	BHN
				BHs	Samples	Conc.	Conc.	Conc.	Conc.	Quality Reserve	Threshold
		pH		15	15	7.08	6.72	7.18	6.98	7.18	5 – 9
		Electrical Conductivity	mS/m	15	15 15	197.00	32.70	885.00	203.00	223.30	150
		Sodium as Na	mg/l	15		297.30	54.10	1510.20	307.85	338.64	200
	Fractured	Calcium as Ca	mg/l	15	15	54.50	4.30	200.80	43.40	54.50	150
	and	Magnesium as Mg	mg/l	15	15	28.90	5.90	376.90	56.85	62.54	70
	Intergranular	Chloride as Cl	mg/l	15	15	610.60	86.50	3495.00	586.65	645.32	200
	Basement Aquifer	Sulphate as SO4	mg/l	15	15	10.20	7.70	338.40	73.05	80.36	400
	(Tygerberg)	Nitrate + Nitrite	mg/l	15	15	0.02	0.02	5.61	0.21	0.23	10
		Fluoride as F	mg/l	15	15	2.35	0.05	2.61	0.67	2.35	1.5
		Ammonia as NH3	mg/l	15	15	0.04	0.02	0.09	0.05	0.06	-
		Orthophosphate as PO4	mg/l	15	15	0.01	0.01	0.06	0.01	0.01	-
		Potassium as K	mg/l	15	15	6.38	2.98	8.80	3.78	6.38	-
Stellenbosch-Helderberg		рН		6	6	7.00	6.41	7.48	7.00	7.48	5 – 9
Otelienbosen-neiderberg		Electrical Conductivity	mS/m	6	6	68.40	17.60	197.00	48.90	68.40	150
		Sodium as Na	mg/l	6	6	95.60	22.40	297.30	66.70	95.60	200
	Fractured	Calcium as Ca	mg/l	6	6	9.60	1.60	99.10	9.60	10.56	150
	and	Magnesium as Mg	mg/l	6	6	13.80	2.90	35.80	9.00	13.80	70
	Intergranular	Chloride as Cl	mg/l	6	6	167.20	34.50	610.60	115.90	167.20	200
	Basement	Sulphate as SO4	mg/l	6	6	14.80	2.00	289.80	5.90	14.80	400
	Aquifer (CGS)	Nitrate + Nitrite	mg/l	6	6	0.24	0.02	8.34	0.94	1.03	10
	()	Fluoride as F	mg/l	6	6	1.25	0.16	2.46	0.41	1.25	1.5
		Ammonia as NH3	mg/l	6	6	0.04	0.04	0.11	0.05	0.06	-
		Orthophosphate as PO4	mg/l	6	6	0.01	0.01	0.08	0.01	0.01	-
		Potassium as K	mg/l	6	6	7.07	0.96	7.07	3.15	7.07	-

GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		pH		3	3	7.56	7.03	7.56	7.40	7.56	5 – 9
		Electrical Conductivity	mS/m	3	3	202.00	25.60	202.00	29.70	202.00	150
		Sodium as Na	mg/l	3	3	290.80	33.90	290.80	36.50	290.80	200
		Calcium as Ca	mg/l	3	3	42.30	1.90	42.30	9.70	42.30	150
	Fractured and	Magnesium as Mg	mg/l	3	3	78.10	4.20	78.10	7.30	78.10	70
	Intergranular	Chloride as Cl	mg/l	3	3	551.60	51.90	551.60	64.50	551.60	200
Wellington	Basement	Sulphate as SO4	mg/l	3	3	118.00	4.30	118.00	4.30	118.00	400
	Aquifer	Nitrate + Nitrite	mg/l	3	3	1.39	1.26	1.39	1.28	1.39	10
	(Tygerberg)	Fluoride as F	mg/l	3	3	1.09	0.22	1.09	0.26	1.09	1.5
		Ammonia as NH3	mg/l	3	3	0.14	0.05	0.21	0.14	0.15	-
		Orthophosphate as PO4	mg/l	3	3	0.01	0.01	0.14	0.01	0.01	-
		Potassium as K	mg/l	3	3	4.09	1.39	4.09	2.68	4.09	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		pН		4	31	8.26	6.40	10.01	7.30	8.26	5 – 9
		Electrical Conductivity	mS/m	4	31	9.27	4.66	16.00	8.10	9.27	150
		Sodium as Na	mg/l	4	26	10.44	2.20	11.00	5.75	10.44	200
	Freetured	Calcium as Ca	mg/l	4	28	4.39	0.20	10.83	3.15	4.39	150
	Fractured Table	Magnesium as Mg	mg/l	4	28	0.46	0.20	7.00	0.60	0.66	70
	Mountain	Chloride as Cl	mg/l	4	28	13.77	6.00	17.62	8.05	13.77	200
Wemmershoek	Group	Sulphate as SO4	mg/l	4	19	3.45	0.20	20.90	0.72	3.45	400
	Aquifer	Nitrate + Nitrite	mg/l	4	24	0.53	0.00	1.27	0.02	0.53	10
	(Peninsula)	Fluoride as F	mg/l	4	4	0.16	0.05	0.39	0.11	0.16	1.5
		Ammonia as NH3	mg/l	4	28	0.45	0.01	0.66	0.05	0.45	-
		Orthophosphate as PO4	mg/l	4	22	0.05	0.00	0.43	0.02	0.05	-
		Potassium as K	mg/l	4	20	8.20	0.10	8.43	0.75	8.20	-
GRU	Aquifer Unit	Parameter	Unit	No. BHs	No. Samples	Baseline Conc.	Min Conc.	Max Conc.	Median Conc.	Groundwater Quality Reserve	BHN Threshold
		рН		49	142	7.97	1.00	8.76	7.24	7.97	5 – 9
		Electrical Conductivity	mS/m	49	142	111.70	35.20	588.00	104.10	114.51	150
		Sodium as Na	mg/l	49	138	146.72	41.80	864.80	141.65	155.82	200
		Calcium as Ca	mg/l	49	140	24.06	6.20	221.70	19.20	24.06	150
		Magnesium as Mg	mg/l	49	139	34.34	7.00	152.80	22.30	34.34	70
Yzerfontein	Primary / Intergranular	Chloride as Cl	mg/l	49	140	284.61	55.60	1646.00	263.25	289.58	200
I ZEHUHLEHI	Aquifer	Sulphate as SO4	mg/l	49	140	109.04	2.00	277.90	40.13	109.04	400
		Nitrate + Nitrite	mg/l	49	139	0.51	0.01	4.18	0.09	0.51	10
		Fluoride as F	mg/l	49	136	0.44	0.03	0.88	0.20	0.44	1.5
		Ammonia as NH3	mg/l	49	139	0.11	0.02	1.16	0.04	0.11	-
		Orthophosphate as PO4	mg/l	49	139	0.05	0.00	0.81	0.06	0.07	-
		Potassium as K	mg/l	49	138	4.22	1.17	49.00	4.52	4.97	-

3. QUANTITY COMPONENTS FOR RIVERS

Proposed results for the Reserve determination and ecological categorisation for the Berg Catchment (G10, G21, G22), where the Reserve amounts are expressed as a percentage of the MAR for the respective catchments (cumulative) in terms of section (16)(1).

Quaternary Catchment	Node/ EWR site	Water Resource	PES	EIS	REC	NMAR (MCM) ¹	Ecological Reserve ³ (MCM)	BHN⁴ Reserve (MCM)	Total Reserve ² (% NMAR)
G10A	Bviii1/EWR 1	Berg	D	High	С	141.683	44.062	0.244	31.272
G10A	Biv5	Franschoek	D	High	С	34.851	8.234		24.330
G10B	Biii2	Wemmershoek	D	High	C/D	85.567	19.200	0	22.440
G10C	Bvii14	Dwars	С	Very High	В	43.650	14.782	4.074	37.688
G10C	Biii3	Berg	D	Low	D	418.079	92.242	1.671	22.460
G10D	Bvii3	Krom/Kromme	D	Moderate	D	18.195	2.582		16.998
G10D	Bvii10	Berg	D	Moderate	C/D	461.597	153.247		33.310
G10D	Bvii15	Doring	D	High	С	3.841	0.849	0.511	33.311
G10D	Bviii2/EWR 6	Krom/Kromme	D	Moderate	D	3.557	0.505		28.556
G10D	Bvii4	Kompanjies	D	Moderate	D	24.814	3.450		15.960
G10D	Bvii5/EWR 3	Berg	D	Moderate	C/D	534.333	177.395		33.294
G10E	Biii4	Klein Berg	D	Moderate	D	84.212	12.161	0.107	14.567
G10F	Bvii11	Berg	D	Moderate	D	557.017	115.094	0.243	20.703
G10J	Biv4	Vier-en-Twintig	D	Moderate	D	165.478	24.139		14.726
G10J	Bvii6/EWR 4	Berg	D	Moderate	D	860.679	177.839		20.686
G10J	Bvii8	Berg	D	Moderate	D	896.408	185.221	1	20.685
G10J	Biv1	Berg	D	Moderate	D	678.963	140.291	0.225	20.693

Table 3.1: Summary of the quantity component for the Rivers which include the EWR & BHN.

Quaternary Catchment	Node/ EWR site	Water Resource	PES	EIS	REC	NMAR (MCM) ¹	Ecological Reserve ³	BHN⁴ Reserve	Total Reserve ² (% NMAR)
G10J	Bvii17	Sandspruit	С	Moderate	С	9.248	1.927		20.840
G10J	Biii5	Matjies	D	Moderate	D	32.930	4.237		13.553
G10J	Bvii8	Berg	D	Moderate	С	896.405	185.221		20.685
G10J	Bvii18	Moreesburgspruit	E	Moderate	D	3.269	0.456		20.833
G10K	Bvii12/EWR 5	Berg	D	High	D	901.794	377.955	0.084	41.919
G10L	Bii1	Sout	D	Low	D	13.169	1.664	0.400	13.844
G10L	Biv2	Berg	D	Low	D	924.535	222.974	0.160	24.137
G21A	Bviii3	-	D	High	D	0.959	0.140	0.094	24.442
G21B	Bvii10	Sout	E	High	D	6.211	1.018	0.810	29.431
G21D	Bv1/ EWR Die1	Diep	D	Moderate	D	13.716	1.911	0.000	16.555
G21D	Bvii4	Swart	D	High	D	2.325	0.332	0.360	29.744
G21D	Biv6	Diep	D	High	D	9.300	2.033	-	28.634
G21E	Biv7	Mosselbank	D	High	D	30.262	2.033	7.400	38.513
G22B	Bviii6	Hout Bay	D	High	D	17.221	3.905	0.361	24.766
G22D	Bvii7	Keysers	D	High	D	4.495	0.672	0	71.00
G22F	Biii6 / EWR Eer 1	Eerste (Jonkershoek)	С	High	С	36.585	8.582	0.156	23.046
G22G	Biv9	Klippies		High	D	18.225	2.641	0.484	5.297
G22J	Bvii21/ Lou 1	Lourens	D	Moderate	D	57.634	8.452	0.240	15.086
G22K	Bviii9	Sir Lowry's Pass*	С	High	С	48.636	11.738	0.960	26.104
G40A	Bvii22/ EWR 8	Steenbras	С	Very High	B/C	34.807	4.696	0	13.49

¹ NMAR is the Natural Mean Annual Runoff.
 ² The total Reserve amount accounts for both the Ecological Reserve and the Basic Human Needs Reserve (BHN).
 ³ This amount represents the long-term mean based on the NMAR. If the NMAR changes, this volume will also change.
 ⁴ Represents the Basic Human Needs (BHN).

4. QUALITY COMPONENT FOR RIVERS

4.1 Water Quality Ecological Specifications

Quaternary Catchment/ EWR Site	River	Sub-component	Indicator	Ecological Specifications
G10A	Berg	Nutrients	Phosphate as P (PO4-P)	≤ 0.025 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 0.70 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 30 milligrams per Litre (mg/L) (95 th percentile)
		System variables	pH range	$4.5 \le \text{pH} \le 7.5 (5^{\text{th}} \text{ and } 95^{\text{th}} \text{ percentile})$
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	DO ≥ 8 milligrams per litre (mg/L)
		Pathogens	Escherichia coli	≤ 130 counts/100ml (95 th percentile)
G10C	Berg	Nutrients	Phosphate as P (PO4-P)	<pre>≤ 0.075 milligrams per Litre (mg/L) (50th percentile)</pre>
			Total Inorganic Nitrogen (TIN)	≤ 1.75 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le \text{pH} \le 8.5 \text{ (5}^{\text{th}} \text{ and } 95^{\text{th}}$ percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	DO ≥ 6 milligrams per litre (mg/L)
		Toxins	Ammonia	\leq 0.073 counts/100ml (95 th percentile)
			Altrazine	\leq 0.079 counts/100ml (95 th percentile)
			Endusulfan	\leq 0.0013 counts/100ml (95 th percentile)
		Pathogens	Escherichia coli	\leq 2500 counts/100ml (95 th percentile)
G10D	Berg	Nutrients	Phosphate as P (PO4-P)	≤ 0.125 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 3.00 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5 th percentile)
			Ammonia	\leq 0.073 counts/100ml (95 th percentile)
		Toxins	Altrazine	\leq 0.079 counts/100ml (95 th percentile)
			Endusulfan	\leq 0.0013 counts/100ml (95 th percentile)
		Pathogens	Escherichia coli	≤ 2500 cfu/100ml (95 th percentile)

Quaternary Catchment/ EWR Site	River	Sub-component	Indicator	Ecological Specifications
G10E	Klein Berg	Nutrients	Phosphate as P (PO4-P)	≤ 0.1075 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 1.75 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5th percentile)
			Ammonia	\leq 0.073 counts/100ml (95 th percentile)
		Toxins	Altrazine	\leq 0.079 counts/100ml (95 th percentile)
			Endusulfan	\leq 0.0013 counts/100ml (95 th percentile)
		Pathogens	Escherichia coli	≤ 2500 cfu/100ml (95 th percentile)
G10J	Berg	Nutrients	Phosphate as P (PO4-P)	≤ 0.075 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 1.75 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5 (5^{th} and 95^{th} percentile)$
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5th percentile)
		Toxins	Altrazine	\leq 0.079 counts/100ml (95 th percentile)
			Endusulfan	\leq 0.0013 counts/100ml (95 th percentile)
		Pathogens	Escherichia coli	\leq 1065 counts/100ml (95 th percentile)
G10K	Berg	Nutrients	Phosphate as P (PO4-P)	\leq 0.075 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 1.75 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5 th percentile)
		Toxins	Altrazine	≤ 0.079 counts/100ml (95 th percentile)
			Endusulfan	\leq 0.0013 counts/100ml (95 th percentile)
		Pathogens	Escherichia coli	\leq 2500 counts/100ml (95 th percentile)
G21D	Diep	Nutrients	Phosphate as P (PO4-P)	≤ 0.075 milligrams per Litre (mg/L) (50 th percentile)

Quaternary Catchment/ EWR Site	River	Sub-component	Indicator	Ecological Specifications
			Total Inorganic Nitrogen (TIN)	≤ 1.75 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 450 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5 th percentile)
		Toxins	Altrazine	≤ 0.079 counts/100ml (95 th percentile)
			Endusulfan	≤ 0.0013 counts/100ml (95 th percentile)
0010	Disa	Pathogens	Escherichia coli	≤ 2500 counts/100ml (95 th percentile)
G21D	Diep	Nutrients	Phosphate as P (PO4-P)	<pre>≤ 0.125 milligrams per Litre (mg/L) (50th percentile)</pre>
		0.1	Total Inorganic Nitrogen (TIN)	≤ 3.0 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 350 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5 th percentile)
		Toxins	Altrazine	≤ 0.079 counts/100ml (95th percentile)
			Endusulfan	≤ 0.0013 counts/100ml (95th percentile)
0000	Haut Davi	Pathogens	Escherichia coli	≤ 2500 counts/100ml (95 th percentile)
G22B	Hout Bay	Nutrients	Phosphate as P (PO4-P)	<pre>≤ 0.125 milligrams per Litre (mg/L) (50th percentile)</pre>
		0-1-	Total Inorganic Nitrogen (TIN)	≤ 3.0 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature ≥ 6 milligrams per litre (mg/L) (5 th
		Dothogono	Dissolved Oxygen	percentile)
6330	Koveers	Pathogens	Escherichia coli	≤ 1065 counts/100ml (95 th percentile)
G22D	Keysers	Nutrients	Phosphate as P (PO4-P)	<pre></pre>
		Colto	Total Inorganic Nitrogen (TIN)	≤ 3.0 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 85 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature

Quaternary Catchment/ EWR Site	River	Sub-component	Indicator	Ecological Specifications
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5 th percentile)
		Pathogens	Escherichia coli	\leq 4000 counts/100ml (95 th percentile)
G22F	Jonkershoek	Nutrients	Phosphate as P (PO4-P)	≤ 0.075 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 1.75 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5th percentile)
			Ammonia	\leq 0.073 counts/100ml (95 th percentile)
		Toxins	Altrazine	\leq 0.079 counts/100ml (95 th percentile)
			Endusulfan	\leq 0.0013 counts/100ml (95 th percentile)
		Pathogens	Escherichia coli	≤ 2500 counts/100ml (95 th percentile)
G22G	Klippeis	Nutrients	Phosphate as P (PO4-P)	≤ 0.125 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 3.0 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5th percentile)
			Ammonia	≤ 0.073 counts/100ml (95 th percentile)
		Toxins	Altrazine	≤ 0.079 counts/100ml (95 th percentile)
			Endusulfan	\leq 0.0013 counts/100ml (95 th percentile)
		Pathogens	Escherichia coli	\leq 4000 counts/100ml (95 th percentile)
G22J	Lourens	Nutrients	Phosphate as P (PO4-P)	\leq 0.075 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 1.75 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5 th percentile)
			Ammonia	\leq 0.073 counts/100ml (95 th percentile)

Quaternary Catchment/ EWR Site	River	Sub-component	Indicator	Ecological Specifications
		Toxins	Altrazine	\leq 0.079 counts/100ml (95 th percentile)
			Endusulfan	\leq 0.0013 counts/100ml (95 th percentile)
		Pathogens	Escherichia coli	\leq 2500 counts/100ml (95 th percentile)
G22J	Sir Lowry's Pass	Nutrients	Phosphate as P (PO4-P)	≤ 0.075 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 1.75 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$6.5 \le pH \le 8.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5 th percentile)
		_ .	Ammonia	\leq 0.073 counts/100ml (95 th percentile)
		Toxins	Altrazine	\leq 0.079 counts/100ml (95 th percentile)
			Endusulfan	\leq 0.0013 counts/100ml (95 th percentile)
		Pathogens	Escherichia coli	\leq 2500 counts/100ml (95 th percentile)
G40A	Klippeis	Nutrients	Phosphate as P (PO4-P)	≤ 0.025 milligrams per Litre (mg/L) (50 th percentile)
			Total Inorganic Nitrogen (TIN)	≤ 0.70 milligrams per Litre (mg/L) (50 th percentile)
		Salts	Electrical conductivity (EC)	≤ 55 milli Siemens/metre (95 th percentile)
		System variables	pH range	$5.0 \le pH \le 7.5$ (5 th and 95 th percentile)
			Water temperature	2°C difference from ambient water temperature
			Dissolved Oxygen	≥ 6 milligrams per litre (mg/L) (5 th percentile)
		Toxins	Iron	≤ 0.1 milligrams per litre (mg/L) (95 th percentile)
			Manganese	≤ 0.18 milligrams per litre (mg/L) (95 th percentile)
		Pathogens	Escherichia coli	\leq 1065 counts/100ml (95 th percentile)

5. ESTUARINE COMPONENT

Quat	Estuaries	Estuary Type	PES	REC	Natural MAR (MCM)	Present MAR (MCM)
G10M	Berg River Estuary	Permanently Open	D	С	963.76	520.38
G10M	Langebaan Estuary	Estuarine Bay	В	А	4.94	N/A
G21F	Rietvlei/Diep Estuary	Temporarily Open	D	D	60.804	57.957
G22K	Zandvlei Estuary	Temporarily Open	D	С	31.68	29.59
G22D	Zeekoe Estuary	Permanently Open	Е	D	18.36	17.14
G22A	Wildvoelvlei Estuary	Temporarily Open	D	С	6.299	9.269
G22H	Eerste Estuary	Temporarily Open	E	D	114.81	101.4
G22J	Lourens Estuary	Temporarily Open	D	D	70.027	59.221

Table 5.1: The ecological water requirements of Estuaries.

6. ECOLOGICAL SPECIFICATIONS FOR ESTUARIES

Thresholds of potential concern (TPC) are defined as measurable end points related to specific abiotic or biotic indicators that if reached (or when modelling predicts that such points will be reached) prompts management action. In essence, TPCs should provide early warning signals of potential non-compliance to ecological specification (i.e. not the point of 'no return'). This implies that the indicators (or monitoring activities) selected as part of long-term monitoring programme need to include biotic and abiotic components that are particularly sensitive to changes in river inflow. The TPCs associated with each of the ecological specifications are also provided in **Tables 6.1 – 6.8**.

Component	Ecological Specification	Threshold of Potential Concern
		The number of non-passerine waterbird species recorded in counts decreases by more than 15% across five or more annual surveys
Birds	 Retain at least 90% of the baseline species richness, abundance and diversity of the bird community. 	 The overall numbers of any of the defined groups decreases relative to the baseline average by more than 15% over a five-year period, after correcting for regional/global population changes.
		 The numbers of any species decreases relative to the baseline average by more than 15% over a five-year period, after correcting for regional/global population changes.

Table 6.1: Ecological Specifications and TPC for the Berg Estuary.

Component	Ecological Specification	Threshold of Potential Concern
Fish	 Retain the full complement of estuarine resident (7 species) and estuary associated marine (5 species) present in the estuary with population sizes sufficient to ensure their persistence in perpetuity. Ensure that exotic freshwater species do not increase to levels where they can exclude any more indigenous species through predation or competitive interactions 	 Comprehensive survey of fish in the estuary (40 + sites sampled across full estuary with fine mesh seine net) during summer fails to confirm presence of viable populations of all 15 species. Abundance of exotic freshwater species increases by more than 50% above present levels
	 Maintain recruitment of adult and juvenile fish at present levels. This requires maintaining sufficient flow for freshwater plume (temperature, salinity, and olfactory gradient) entering the sea. This implies that there should be a significant number of 0 -1-year-old fish and no missing year classes. 	 There are a missing year class within a species
Invertebrates	Retain present species richness, distribution of species and mix (low species abundance, high dominance) in Zones A to the middle reaches of Zone C. One or two species will always be present at high densities compared to others (e.g. <i>Pseudodiaptomus hessei, Grandidierella</i> sp.) in these Zones (A to C).	 Species richness increases or decreases by more than 25% in any of the invertebrate categories (zooplankton, Subtidal zoobenthos or Intertidal benthos) in Zones A to C compared to present.
	 Indicator species such as Capitella capitata, should not dominate benthic species at any site. 	Capitella capitata exceeds 50% abundance of benthic species at any site
	Callianassa kraussi and Upogebia africana distribution patterns remain similar to present state.	Areas of distribution extend upstream or downstream by more than 4-5 km.
Invertebrates	• Maintain the present distribution (2003- 2005) and abundance of the different plant community types and estuarine habitats (intertidal mudflats with <i>Zostera</i> <i>capensis</i> 206 ha, intertidal salt marsh 499 ha, open pan 1159 ha, halophytic floodplain 1521 ha, xeric floodplain 919.1 ha, reeds and sedges 586.6 ha and sedge pan 292.5 ha).	 Greater than 10% change in the area covered by different plant community types
	 Prevent an increase in mats of macroalgae in the lower intertidal reaches. 	 Percentage cover should not exceed 100% in more than 50% of the quadrats.
Macrophytes	• Reduce the area covered by water hyacinth (<i>Eicchornia crassipes</i>) in the upper reaches by 50% compared to the present state (2003-2005).	Upper reaches of the estuary with greater than 50% of estuary water channel covered by water hyacinth.
	• Prevent an increase in size of the open pan dry areas (1159 ha in 2003-2005)	Greater than 10 % increase in area.
	Prevent a decrease in size of the sedge pan areas (293 ha in 2003-2005). <i>Juncus</i> <i>maritimus</i> , and waterblommetjies <i>Aponogeton distachyos</i> are present.	Greater than 10 % decrease in area. Juncus maritimus, and waterblommetjies Aponogeton distachyos are absent.

Component	Ecological Specification	Threshold of Potential Concern
	 Control the spread of invasive aliens the riparian zone (e.g. Acacia means and Eucalyptus camaldulensis) 	
	 Maintain intact reed and sedge stan along the banks of the estuary ensuring that salinity is not greater th 20 ppt for 3 months at 20 km from t month during summer. 	• Dieback of reeds and sedges at 20 km and
Macrophytes	 Prevent an increase in bare ground in t halophytic and xeric floodplain habita by maintaining the present-day floodi patterns 	• Greater than 20% increase in bare ground
	 Maintain a low phytoplankton bioma with a small REI (i.e. 10 ppt to river ppt) zone 	
Microalgae	Maintain microalgal group diversity measured under present state (2004)	 Flagellates cease to be the dominant group and diatoms become less diverse (<10 taxa per site)
Microalgae	Maintain intertidal and subtidal microphytobenthic biomass as measured under present state (2004).	Benthic microphytobenthic biomass exceed 40 mg/m2 chlorophyll a
	 Maintain a low frequency of dinoflagellates 	• The frequency of dinoflagellates exceeds 5% of the total phytoplankton counts
	Salinity intrusion should not to cause exceedence of TPCs for fish, invertebrates, macrophytes and microalgae (see above)	 Salinity greater than 20 ppt for longer than 3 months at 20 km upstream from the mouth (brackish saltmarsh, reeds and sedges and invertebrates) – continuously monitored as 25 ppt measured at 11 km Kliphoek (G1H024) Salinity of groundwater increases to 45 ppt and depth to water table to 1 m. (Xeric flood plain salt marsh). Total dissolved solids (measure of 'salinity') of river inflow exceeds 3500 mg/l (phytoplankton) in river. Salinity in estuary exceeds 35 ppt (prevent hyper-salinity) (phytoplankton) Salinity greater than 0 ppt occurs above 40 km upstream of the mouth (fish)
Water quality	 System variables (pH, dissolved oxygen and transparency) not to exceed TPCs for biota (see above) 	 River inflow: 7 < pH > 8.5 DO <4 mg/l Estuary: Secchi disc depth in Zones A and B <1.0 m during low flow (< 1m³s⁻¹) 7 < pH > 8.5 DO <4 mg/l
	 Inorganic nutrient concentrations not to cause in exceedance of TPCs for macrophytes and microalgae (see above) 	 River inflow (< 1 m³s⁻¹ – summer): DIN >80 μg/l; DRP > 20 μg/l River inflow (>5 m³s⁻¹ – winter): DIN >800 μg/l; DRP >60 μg/l Estuary (lowflows < 1 m³s⁻¹, summer): DIN >300 μg/l; DRP >100 μg/l in Zones A and B DIN >80 μg/l; DRP >30 μg/l in Zones C and D Estuary (high flows > 5 m³s⁻¹, winter): DIN >800 μg/l; DRP >60 μg/l in Zones A-D

Component	Ecological Specification	Threshold of Potential Concern
	 Presence of toxic substances not to cause exceedence of TPCs for biota (see biotic components above) 	 Trace metals: Concentrations in estuary exceed target values as per SA Water Quality Guidelines for coastal marine waters (DWAF 1995). TPCs for trace metals in sediments still need to be established. Pesticides/herbicides: Baseline studies to be undertaken before TPCs can be set.
Hydrodynamics	 Maintain a flow regime to create the required habitat for birds, fish, macrophytes, microalgae and water quality 	 River inflow distribution patterns differ by more than 10% from that of Scenario 1 (i.e. Present day without BRD) River inflow decreases to below 0.5 m3s-1 at any time. River inflow below 1 m3s-1 persist for longer than 4 months. Changes in tidal amplitude at 2 km, 11 km, ~40 km and 51 km of more than 10% from present state (2004)
	 Flood regime to maintain the sediment distribution patterns and aquatic habitat (instream physical habitat) so as not to exceed TPCs for biota (see above) 	 Long-term river inflow distribution patterns (flood components) differ by more than 10% (in terms of magnitude, timing and variability) from that of the present state (2004) Suspended sediment concentration from river inflow deviates by more than 10% of the sediment load discharge relationship to be determined as part of baseline studies (present state 2004), i.e. from that of Present day without Berg.
Sediment dynamics and morphology	 Changes in sediment grain size distribution patterns not to cause exceedance of TPC in benthic invertebrates (see above). 	 The median bed sediment diameter over/under exceeds by more than 10% the range (envelope) to be determined as part of baseline studies (present state). Sand/mud distribution in all reaches change by more than 10% from present state range.

Table 6.2: Ecological Specifications and TPC for the Langebaan Estuary.

Component	Ecological Specification	Threshold of Potential Concern
Microalgae	• Maintain low phytoplankton biomass (chlorophyll- a < 20 µg/ℓ) and a diversity of phytoplankton groups.	 Consistent high phytoplankton biomass (chlorophyll- a > 20 μg/ℓ) due to nutrient input and change in dominance of phytoplankton groups.
Macrophytes	 Maintain the distribution and area cover of macrophyte habitats particularly the salt marsh and seagrass. Maintain the large groundwater fed rush habitat. 	• Greater than 10 % change in the area covered by different macrophyte habitats due to disturbance, increase in nutrients and turbidity. However, seagrass <i>Zostera capensis</i> can be naturally variable. Die-back of groundwater dependent rushes and reeds.
Invertebrates	• In terms of Invertebrates Langebaan lagoon is currently in an A category. The invertebrate communities are in good health with species richness, abundances and composition scoring highly.	 Loss of any of the three identified estuarine species (Afrochiltonia capensis, Exosphaeroma hylecoetes, Tomichia ventricosa; Day 1959) dependant on fresh or brackish water. Species richness or abundance changes by more than 10%.

Birds	• The estuary should contain an avifaunal community that includes representatives of all original groups. Significant numbers of waders should be present - a healthy population of migratory waders, and a healthy breeding population of resident waders. The estuary should support tens of thousands of birds in summer and thousands in winter.	
Fish	• The fish community should include healthy populations of exploited fish species, specifically the harders, white stumpnose, blacktail, elf and smoothhound shark juveniles should all be present in beach seine net sampling surveys (at least 10 hauls in 3 different sites) of the nearshore areas. Adults of these species should remain the main components in the catches of line and net fisheries in the lagoon, and catch rates should remain stable or increase.	• Exploited fish species –become rare (mullet average of <100/haul, white stumpnose <20 per haul, other species present in some hauls) or disappear from seine net survey catches.

Table 6.3: Ecological Specifications and TPC for the Diep Estuary	Table 6.3:	Ecological	Specifications	and TPC for the	e Diep Estuary.
---	------------	------------	----------------	-----------------	-----------------

I

Table 6.3: Ecological Specifications and TPC for the Diep Estuary.		
Component	Ecological Specification	Threshold of Potential Concern
Hydrology	• Freshwater input from the catchment has been reduced to an estimated 61% of Reference mostly as a result of water use for irrigation. Flows from the Salt River, which historically used to share a common mouth with the Diep, have been diverted to a separate mouth. Flows are significantly augmented by wastewater from the Potsdam WWTW and serve to keep the mouthy permanently open at present. No further reduction in freshwater input from the catchment from present day levels should be considered. No further increases in waste water should be considered unless the quality of this water is greatly improved (to DWS Special Standards or better).	 Any further reduction in freshwater input from the catchment from present day levels. Any further increases in wastewater or reduction in quality of waste water discharged to the system.
Microalgae	 Maintain low phytoplankton biomass (chlorophyll- a <20 µg/ℓ) and a diversity of phytoplankton groups. Control harmful algal blooms e.g. <i>Microcystis</i> in Flamingovlei by reducing nutrient inputs. 	Consistent high phytoplankton biomass (chlorophyll- a >20 μg/ℓ) throughout the estuary and vlei system.
Invertebrates	• Category D. The estuary should have a viable population of <i>Callichirus kraussi</i> in Milnerton lagoon (30/m ²). At least 5 other estuarine species should be present in Milnerton lagoon and in the channel to Rietvlei. At least three marine dependant invertebrate species present near the mouth.	 Sparse population of <i>Callichirus</i> kraussi in Milnerton lagoon (<10/m²). Number estuarine species drops below 5 in Milnerton lagoon and Channel region. Less than 3 marine dependant invertebrate species present near the mouth.
Macrophytes	 Maintain diversity of habitats particularly remaining salt marsh areas through salinity and water level fluctuations. Control growth of aquatic invasive plants by improving water quality (nutrient inputs from stormwater canals as well as WWTW input). Control spread of terrestrial invasive alien plants in riparian and floodplain habitats. No further encroachment of development and loss of estuary habitat. 	 Greater than 10% change in the area covered by different macrophyte habitats. Salt tolerant species such as <i>Sarcocornia</i> and <i>Limonium</i> present. Terrestrial and aquatic invasive plants cover more than 10% of the total estuary area. Increase in bare, disturbed areas.

Component	Ecological Specification	Threshold of Potential Concern
Fish	• Fish assemblage should include at least 5 estuarine breeding species (Category I) and 5 estuary dependent or associated marine species (Category II) Estuarine residents, estuary dependent marine species and marine vagrants (Category III) should all be present in the fish community and the relative abundance of estuary residents and estuary associated marine species may fluctuate but should not fall below 10% for either category.	 Proportion of either estuary residents or estuary dependent marine species drops below 10 % numerically. Decrease in average diversity of indigenous fish species to < 10 species.

Component	Ecological Specification	Threshold of Potential Concern
Component	• A or BAS = D, current category. The estuary should	Loss of Callichirus kraussi
Invertebrates	• A of BAS = D, current category. The estuary should maintain its population of <i>Callichirus kraussi</i> in the lower reaches and main basin in its current condition. In addition the number of invertebrate species associated with soft sediment should not decrease below 10 species. At least three marine invertebrate species present near the mouth.	 Loss of <i>Californius</i> kraussi populations from lower reaches and main basin. Less than 8 estuarine invertebrate species found utilizing the soft sediment in the main basin. Less than 2 marine dependant species present at the mouth.
Fish	• Fish assemblage should include at least 5 estuarine breeding species (Category I) and 10 estuary dependent or associated marine species (Category II) Estuarine residents, estuary dependent marine species and marine vagrants (Category III) should all be present in the fish community and the relative abundance of estuary residents and estuary associated marine species may fluctuate but should not fall below 10% for either category.	 Proportion of either estuary residents or estuary dependent marine species drops below 10 % numerically. Decrease in average diversity of indigenous fish species to < 15. Increase in proportion of alien freshwater species in the estuary (the alien sharptooth catfish are currently increasing in abundance).
Birds	 The estuary should contain an avifaunal community that includes representatives of all original groups. A healthy population of migratory waders, a healthy breeding population of resident waders, a healthy and diverse population of wading birds and waterfowl should be present. The estuary should support thousands of birds in summer and in winter. 	 Numbers of bird species drop below 20 for three consecutive months.
Microalgae	 Reduce phytoplankton blooms and occurrence of toxic cyanobacteria through water quality management. Maintain a diversity of phytoplankton groups. 	 Phytoplankton biomass / water column chlorophyll-greater than 100 μg/l for 50% of the year. Microcystin concentration greater than 1 μg/l for 50% of the year
Macrophytes	 There should be no further loss of riparian vegetation due to development. Prevent the spread of reeds, rushes and sedges into the main channel Control growth of aquatic invasive plants by improving water quality. Prevent the spread of terrestrial invasive plants in the riparian and floodplain habitat. 	 Unvegetated, cleared areas along the banks. Emergent macrophytes expand into the open water surface area due to shallowing and nutrient enrichment. Aquatic invasive plants cover > 10% of open water surface area and terrestrial invasive plants cover > 20%.

Table 6.5: Ecological Specifications and TPC for the Zeekoe Estuary.

Table 6.5: Ecological Specifications and TPC for the Zeekoe Estuary.		
Component	Ecological specification	Threshold of potential concern
Invertebrates	• A or BAS = E, current category. The estuary should have a population of <i>Callichirus kraussi</i> at least the mouth, or if this species is missing another estuarine species must be present in the lower reaches. At least one marine dependant species must be present at the mouth.	• Absence of <i>Callichirus kraussi</i> , or less than 2 estuarine species. No marine species present at the mouth.
Fish	• Reduce waste water flows to restore a fish assemblage in the estuary channel (Zeekoevlei weir to mouth) that includes at least 3 estuarine breeding species (Category I) and 3 estuary dependent or associated marine species (Category II). Estuarine residents, estuary dependent marine species and marine vagrants (Category III) should all be present in the estuary channel. The relative abundance of estuary residents and estuary associated marine species in the estuary channel may fluctuate but should not fall below 5% numerically for either category. Remove chemical barriers (wastewater, cut-off drain) and remove/bypass physical barriers to fish migration into Zeekoevlei allowing at least one successful recruitment event of at least one species of mullet every 3-5 years.	• Estuary residents and estuary dependent marine species absent from the lower estuary. Average diversity of indigenous fish species in the estuary channel drops below 5 and below 3 in Zeekoevlei (currently only 1 in both).
Birds	• The estuary should contain an avifaunal community that includes representatives of all original groups. A healthy population of migratory waders, waterfowl and a healthy breeding population of resident waders should be present. The estuary and vleis should support close to a thousand birds in summer and hundreds in winter.	 Numbers of bird species drop below 25 for three consecutive months.

Table 6.6: Ecological Specifications and TPC for the Wildevoelvlei Estuary

Component	Ecological specification	Threshold of potential concern
Microalgae	 Improvement from current hypereutrophic state where toxic cyanobacteria are common and flow to the sea. 	 Phytoplankton biomass / water column chlorophyll-a greater than 100 μg/ℓ for 50% of the year in the vleis. Microcystin concentration greater
		than 1 μ g/ ℓ for 50% of the year in the vleis.
Macrophytes	 Maintain diversity of macrophyte habitats and species richness. Maintain the fringing vegetation around the vleis as this is important for bank stabilisation and nutrient uptake. Improve connectivity between the sea, channel and lower vlei. Control the spread of invasive floating aquatic macrophyte species present in the vleis e.g. water fern. 	 Greater than 10 % change in the area covered by riparian vegetation in the lower and upper vlei. Overgrown vegetated channel, no visible water in the channel between the lower estuary
		greater than 10% of the total water surface area.

Component	Ecological specification	Threshold of potential concern
Invertebrates	 Move from a D category to a C category. The estuary should have a viable population of Callichirus kraussi in the backwater lagoon (10/m²). In addition, the invertebrate community should include 2 other estuarine species in the canal. At least three marine invertebrate species present near the mouth. 	 Loss of Callichirus kraussi populations from the mouth region (currently populations are of low density). Number of estuarine species drop to less than 2 in the canal (estimated current situation). Less than three marine dependant species present in the backwater lagoon.
Fish	 Maintain fish assemblage that includes at least two species of mullet, Liza richardsonii and either/both Mugil cephalus and Pseudomyxus capensis. Substantial seasonal fluctuations in abundance of these mullet species are expected to occur, but mullet should remain more abundant than the alien freshwater species currently inhabiting the vleis. 	 Mullet species absent from vleis. Fish community dominated by alien freshwater species, or no fish present in the system.

Table 6.7: Ecological Specifications and TPC for the Eerste Estuary.

Component	Ecological specification	Threshold of potential concern
Microalgae	 Maintain low phytoplankton biomass (chlorophyll- a < 20 μg/ℓ) and a diversity of phytoplankton groups. 	 Frequent observable blooms and scums in the estuary. Consistent high phytoplankton biomass (chlorophyll- a > 20 µg/l) as a result of high nutrient inputs from the catchment and WWTW and increase in water retention.
Macrophytes	 Prevent the spread of reeds, rushes and sedges into the main channel Maintain the integrity of the riparian zone Prevent the spread of invasive plants in the riparian and floodplain habitat. 	 Greater than 20 % increase in the area covered by these macrophytes. Development has disturbed greater than 50% of the riparian zone. Invasive plants (e.g <i>Acacia cyclops</i> and <i>Myoporum tenuifolium</i>) cover more than 20% of the riparian and floodplain habitat.
Invertebrates	 Move from an E category to a D category. The estuary should have a viable population of <i>Callichirus kraussi</i> at the mouth/lower reaches (minimum of 10/m²). In addition the invertebrate community should include 3 other estuarine species. There should be 1 marine invertebrate species present near the mouth. 	• <i>Callichirus kraussi</i> populations disappear from the mouth region (current situation). Number of estuarine species drop to less than 3 (estimated current situation). Less than one marine dependant species present.
Fish	 Reduce waste water flows to restore a fish assemblage that includes at least 3 estuarine breeding species (Category I) and 4 estuary dependent or associated marine species (Category II) Estuarine residents, estuary dependent marine species and marine vagrants (Category III) should all be present in the fish community and the relative abundance of estuary residents and estuary associated marine species may fluctuate but should not fall below 10% for either category. 	 Proportion of either estuary residents or estuary dependent marine species drops below 10 % numerically. Decrease in average diversity of indigenous fish species to < 7 (currently only 1). Increase in proportion of alien freshwater species in the estuary (the alien sharptooth catfish are currently increasing in abundance).
Birds	• The estuary should contain a rich avifaunal community that includes representatives of all original groups, significant numbers of terns, a healthy population of waterfowl and migratory waders, and a healthy breeding population of resident waders. The estuary should support thousands of birds in summer and hundreds in winter.	 Numbers of terns recorded in midsummer are fewer than 500. Numbers of bird species drop below 20 for three consecutive months.

Component	ogical Specifications and TPC for the Lo	Threshold of potential concern
Microalgae	 Maintain low phytoplankton biomass (chlorophyll- a < 20 μg/ℓ) and a diversity of phytoplankton groups. 	 Observable blooms and scums in the estuary. Consistent high phytoplankton biomass (chlorophyll- a > 20 μg/ℓ) as a result of high nutrient inputs and increase in water retention.
Macrophytes	 Prevent the spread of reeds, rushes and sedges into the main channel. Improve the integrity of the riparian zone and control the spread of invasive plants. 	 Greater than 20 % increase in the area covered by reeds, rushes and sedges caused by reduced flow, sedimentation and nutrient input. Invasive plants (e.g Acacia cyclops and Myoporum tenuifolium) cover more than 20% of the riparian and floodplain habitat.
Invertebrates	 Move from a D category to a C category? The estuary should have a viable population of Callichirus kraussi at the mouth/lower reaches (20/m2-). In addition the invertebrate community should include 4 other estuarine species. At least three marine invertebrate species present near the mouth. 	• Loss of Callichirus kraussi populations from the mouth region (current situation). Number of estuarine species drop to less than 3 (estimated current situation). Less than two marine dependant species present at the mouth.
Fish	 Maintain fish assemblage that includes at least 2 estuarine breeding species (Category I) and 4 estuary dependent or associated marine species (Category II) Estuarine residents, estuary dependent marine species and marine vagrants (Category III) should all be present in the community and the relative abundance of estuary residents and estuary associated marine species may fluctuate but should not fall below 10% for either category. 	 Proportion of either estuary residents or estuary dependent marine species drops below 10 % numerically. Decrease in average diversity of indigenous fish species to < 6. Increase in proportion of alien freshwater species in the estuary (currently absent in samples).
Birds	 The estuary should contain an avifaunal community that includes representatives of all original groups. Significant numbers of terns should be present, a healthy population of migratory waders, and a healthy breeding population of resident waders. The estuary should support thousands of birds in summer and hundreds in winter. 	 Numbers of terns recorded in midsummer are fewer than 1000. Numbers of bird species drop below 12 for three consecutive months.

Table 6.8: Ecological Specifications and TPC for the Lourens Estuary.

ļ

7. WETLAND COMPONENT

Table 7.1: Summar	of the PES and REC of the identified wetlands.
-------------------	--

Node	Quat	Description	Associated wetlands	HGM	PES	REC
Bvii10	G10D	D/s of confluence Kromme, at gauging weir G1H015		Floodplain	С	С
Bvii15	G10D	Gauge	Klein-Sand River vlei*	Floodplain	С	С
Bvii5	G10D	At gauging weir G1H036 and u/s of EWR 3 - C/D		Floodplain	с	с
Bvii11	G10F	U/s of Voëlvlei canal		Floodplain	С	С
Biii4	G10E	At gauging weir G1H008		Channelled Valley Bottom	С	С
				Flat	С	С
Biv1	G10J	U/s of confluence Klein-Berg, d/s Voëlvlei canal	Berg River	Floodplain	C C	C C
			Berg River	Seep Floodplain	C	C
Bvii17	G10J	Gauge		Flat	C	C
Bvii6	G10J	D/s of EWR 4, above Misverstand Dam G1H013 - D	Berg River	Floodplain	C	C
Bvii8	G10J	U/s Misverstand reservoir, d/s confluence with Matjies	Berg River	Floodplain	С	С
Bvii12	G10K	3.5 km d/s of Misverstand reservoir, at EWR 5 - D		Floodplain	С	С
Bii1	G10L	U/s of confluence with Berg		Floodplain	С	С
				Flat	С	С
				Channelled Valley Bottom	A/B	A/B
				Unchannelled Valley Bottom	A/B	A/B
Biv2	G10L	U/s of confluence with Sout, head of estuary		Floodplain	С	С
				Floodplain (within G10K)	A/B	A/B
				Flat (within G10K)	A/B	A/B
				Channelled Valley Bottom (within G10K)	C	C
				Hillslope seep Unchannelled Valley	C A/B	C A/B
Bviii3	G21A	Inflow to Yzerfontein salt pan		Bottom Unchannelled Valley	C	C
Bviii4	G21D	U/s of confluence with Diep		Bottom		
Bxi7	G21F	Rietvlei/Diep Estuary	Rietvlei [#]	Floodplain	С	С
Biv9		U/s confluence Eerste	Cape Corps*	Floodplain	-	-
	G22H		Khayelitsha pool*	Floodplain	C/D	C/D
	ļ		Nooiensfontein#	Floodplain	E	D
Bviii3	G21A	Inflow to Yzerfontein salt pan	Yzerontein Salt Pan	Depression	A/B	A/B
Bvii5			Blouvlei [#]	Depression	В	В
Bvii7	G22D	At EWR site	Princessvlei*	Depression	С	С
Bxi20	G22D	Zeekoe Estuary	Zeekoevlei*	Depression	E	D
DXIZU	6220	LEERUE ESLUALY	Rondevlei*	Depression	В	В
Bxi14	G22A	Wildvoelvlei estuary	Noordhoek Salt Pan*	Depression	-	-
			Pick n Pay Reedbeds [#]	Depression	В	В
Bxi4	G22J	Lourens Estuary	Paardevlei*	Seep	-	-

Source: EGI, Malan and CCT. EGI = Electrical Grid Infrastructure Data. * Western Cape Wetlands Directory.